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ABSTRACT

This paper presents a novel sparse representation for robust
face recognition. We advance both group sparsity and data lo-
cality and formulate a unified optimization framework, which
produces a locality and group sensitive sparse representation
(LGSR) for improved recognition. Empirical results confirm
that our LGSR not only outperforms state-of-the-art sparse
coding based image classification methods, our approach is
robust to variations such as lighting, pose, and facial details
(glasses or not), which are typically seen in real-world face
recognition problems.

Index Terms— Face recognition, sparse representation,
group Lasso, data locality

1. INTRODUCTION

Face recognition is among the active research topics in pattern
recognition and computer vision due to its wide applications
in human-computer interaction, automatic photo-tagging, and
information security [1]. Since real-world face images con-
tain noisy background clutter and are typically with signif-
icant lighting, expression, pose, etc. variations, robust face
recognition remains a very challenging task.

Numerous methods have been proposed to transform face
image data to a lower dimensional feature space for recogni-
tion, e.g. Eigenfaces [2], Fisherfaces [2], and Laplacianfaces
[3]. Nearest neighbor (NN) type classifiers are commonly
used to recognize the projected data. Receiving growing at-
tention from researchers, sparse coding (SC) [7] is a tech-
nique which reconstructs a target instance by a sparse linear
combination of an over-complete dictionary (codebook). SC
has been successfully applied for face recognition problems.
For example, Wright et al. [4] proposed to convert the query
face image into a sparse linear combination of training images
with illumination, etc. variations. By imposing an `1-norm
constraint on the resulting coefficients, their sparse represen-
tation classification (SRC) method achieved very promising
results on face recognition. Yang et al. [6] further presented a
metaface learning (MFL) approach, which aimed to construct
a modified dictionary from training data for sparse represen-

tation and recognition. In [5], Yuan and Yan considered the
group structure of training images (i.e. those from the same
subject) and added an `1,2 mixed-norm (group Lasso) con-
straint [8] upon the formulation. Their multi-task joint sparse
representation was designed to produce a sparse solution at
the group (class) level.

In general pattern recognition problems such as cluster-
ing, dimension reduction, data coding, etc., data locality has
been observed to be critical [9, 10]. In prior SC-based ap-
proaches (including [4]), a test input might be reconstructed
by training images (codewords), which are far from the test
sample and thus produce unsatisfying classification results.
In [10], the authors extended SC and proposed a locality-
constrained linear coding (LLC) scheme, which learned a
data representation using nearest codeword and achieved im-
proved classification performances than the standard SC did.
To the best of our knowledge, data locality and the afore-
mentioned group sparsity constraints have not been jointly
considered to address general image classification problems.
Inspired by [4], we present a further extension of sparse repre-
sentation for robust face recognition, called locality and group
sensitive sparse representation (LGSR). Our LGSR aims to
recover data sparse representation and achieve improved clas-
sification by integrating both group (class) sparsity and data
locality structure into a unified formulation.

2. SPARSE CODING FOR IMAGE
REPRESENTATION AND RECOGNITION

2.1. Image Classification via Sparse Representation

Sparse coding (SC) utilizes an over-complete dictionary to
linearly reconstruct a data instance. For this instance, only a
few weight coefficients will be non-zero, and thus the result-
ing coefficient vector is sparse, as shown in Figure 1a. In [4],
a sparse representation classification (SRC) was proposed for
face recognition. Using all training images from all subjects
as the dictionary, SRC determines the sparse representation of
a query input xt, and it classifies this input to the class if its
associated reconstruction error is minimum.

More specifically, suppose that there are n training im-



Fig. 1. Different image representation strategies: (a) sparse
coding (SC) [4]. (b) SC with group Lasso [5], (c) SC with lo-
cality [10], and (d) our approach. The black circle is the target
instance. Orange circles, red triangles, and green rectangles
represent data from three different subjects, respectively.

ages from c different subjects, and each class j has nj images
available. We have xji ∈ Rm×1 as the image feature vector
of the ith image in the jth class, and m is the dimensionality
of the feature. Let A = [A1,A2, . . . ,Ac] ∈ Rm×n be the en-
tire training set, where Aj = [xj1,xj2, . . . ,xjnj

] ∈ Rm×nj

contains training images of the jth class. The SRC minimizes
the image reconstruction error with a `1-norm regularizer, i.e.

min
w
‖xt −Aw‖22 + λ‖w‖1 , (1)

where w = [w1;w2; · · · ;wc] = [w11, w12, . . . , wcnc ]
> ∈

Rn×1, and wj = [wj1, wj2, . . . , wjnj ]
> ∈ Rnj×1 are the

weight coefficients of Aj . Note that λ in (1) weights the
`1-norm regularizer, which controls the sparsity of w. All
columns of A are normalized to unit length before solving
(1). The formulation of (1) is also referred to as Lasso [11] in
machine learning and statistics literatures.

The above w is considered as the image sparse represen-
tation of the input xt. While one can design a classifier such
as SVM using the resulting vectors w for classification, SRC
utilizes the reconstruction error to classify the query image.
In other words, using the training samples from each class
and the associated wji, the label of the query image will be
assigned to the class with the minimum reconstruction error.

2.2. SC with Group Lasso for Classification

Although standard SC with `1-norm regularization in (1) pro-
duces a sparse coefficient vector w, it has no control over
which attributes to be zeroes (or non-zeroes); in other words,
SC might reconstruct a query face image by training data from
distinct subjects, and thus is not preferable for the task of clas-
sification. In [5], the authors proposed a joint sparse represen-
tation formulation. While all training samples were still used

as codewords, those with the same class label were further de-
fined as a group. A `1,2 mixed-norm regularization term as the
group sparsity constraint, also known as group Lasso [8], was
further imposed on the reconstruction formulation. This con-
straint enforces non-zero coefficients to occur at few specific
groups, while those within the same group can be non-sparse
once that group is selected, as shown in Figure 1b.

Recall that wj is the coefficient vector of Aj , the modified
formulation of (1) with group sparsity is now formulated as:

min
w
‖xt −Aw‖22 + λ

c∑
j=1

‖wj‖2. (2)

From the above equation, one can see that a group-sensitive
sparse solution w will be produced, while it tends to recon-
struct the query image by training images from few correlated
categories. Similar to [4], the query face image will be recog-
nized as the class with the minimum reconstruction error.

2.3. Locality-Constrained SC for Classification

A major limitation of SC-based approaches for classification
is that similar data instances do not guarantee to produce sim-
ilar coding results (i.e. similar w). Wang et al. [10] recently
proposed a locality-constrained linear coding (LLC) for SC,
and introduced a distance regularization when minimizing the
reconstruction error:

min
w
‖x−Aw‖22 + λ‖d�w‖22 , (3)

where A is the codebook, w is the coefficient vector of x, and
d ∈ Rn×1 is the measurement of distance between x and each
visual word in A. Note that the symbol � denotes element-
wise multiplication. As shown in Figure 1c, minimizing (3)
tends to encode the input using its nearby visual words, while
the resulting w will still satisfy the sparsity constraint (a large
di would make the corresponding wji shrink to zero).

It is worth noting that LLC and SRC share the same idea
of sparsity in performing data reconstruction. Inspired by
both group-sensitive representation in [5] and LLC [10], we
propose a novel image sparse representation by imposing this
locality constraint on the group Lasso regularized sparsity re-
construction problem, as we discuss in the next section.

3. LOCALITY AND GROUP-SENSITIVE SPARSE
REPRESENTATION FOR IMAGE CLASSIFICATION

3.1. LGSR Algorithm

Our locality and group sensitive sparse representation (LGSR)
algorithm advances the sparse coding technique, and takes ad-
vantages from both group sparsity and data locality structure
in determining the optimal image representation for image
classification. As shown in Figure 1, adopting the group lasso
constraint may result in misclassification due to large within-
group variations (e.g. pose). Integrating both group sparsity
and locality constraints, our LGSR representation preserves



the similarity between the test input and its neighboring train-
ing data while seeking the optimal sparse representation.

Given a target instance xt, our LGSR formulates xt as
a compact linear combination of grouped training data (i.e.
training samples with the same label). Similar to [5], we use
the entire training set as our over-complete dictionary. We
thus integrates the `1,2 mixed-norm regularization and the lo-
cality constraint into a unified sparse representation formula-
tion, and solve the following optimization problem:

min
w
‖xt −Aw‖22 + λ1

c∑
j=1

‖wj‖2 + λ2‖d�w‖22 , (4)

where λ1 and λ2 weight the group sparsity and locality con-
straints, respectively. In (4), the vector d ∈ Rn×1 penalizes
the distance between xt and each codeword (recall that n is
the number of training instances from all classes). To measure
the distance between xt and each codeword (training sample)
xji, the distance metric is determined as:

dji = exp

(
‖xt − xji‖2

σ

)
. (5)

A larger dji indicates a farther distance between xt and xji

(the ith training vector of class j). We note that this vector d
is considered as a dissimilarity vector, and is used to suppress
the corresponding weight coefficient wji in (4).

3.2. Optimization for LGSR and the Classification Rule

We note that the first and the third terms in (4), i.e. the re-
construction error and the data locality constraint, are both
differentiable with respect to w. Several methods such as [8]
and [12] exist to solve such problems with the group Lasso
constraint (`1,2 mixed-norm regularization term). We apply
the gradient-projection method proposed in [12], and use the
software package 1 to solve our LGSR optimization problem.

Once (4) is minimized, the resulting coefficient vector w
is used as the feature vector of the target instance xt. For
classification, we first calculate the LGSR of the query input,
and we recognize this input as the class with the lowest recon-
struction error using only the associated coefficient attributes
in wj . The decision process is shown as follows:

j∗ = argmin
j
‖xt −Ajwj‖22, (6)

where Aj = [xj1,xj2, . . . ,xjnj
] ∈ Rm×nj contains training

samples from the jth class.
It is clear that our LGSR produces a compact feature rep-

resentation for a data instance, and this representation con-
tains both group (class) and locality information for improved
recognition. The group information in the LGSR coefficient
vector implies the data reconstruction using the training sam-
ples from the specific group (class). Together with data local-
ity information, the LGSR can be viewed as an extension of
the k nearest neighbor (kNN) classifier. While our LGSR is

1Available at http://www.cs.ubc.ca/˜murphyk/Software
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Fig. 2. Recognition accuracy (%) of different methods using
Eigenface on the ORL database.

Table 1. Recognition of the ORL database using Fisherface.
kNN SRC [4] SC+GL [5] SC+LLC [10] Ours

93.20±1.10 94.20±0.76 94.40±0.82 95.00±1.32 95.40±1.43

a training-free (or lazy learning) algorithm (similar to kNN),
the use of both group sparsity and locality constraints is ex-
pected to produce improved recognition performance.

4. EXPERIMENTAL RESULTS

4.1. ORL Database

The ORL database [13] contains 400 face images of 40 peo-
ple, and each of size 112 × 92 pixels. The face images were
taken under different lighting, pose, facial details (glasses or
not), etc. conditions. We randomly and equally split the data
into training and test sets (i.e. five images for each set), as
[4] did. We first extract Eigenfaces as features and perform
recognition using different number of Eigenfaces. We per-
form five random trials, and the recognition performance of
different SC-based methods are reported in Figure 2. We
note that in our implementation of LGSR, we use the stan-
dard deviation of training data A projected into the dominant
eigenspace as the σ in (5). For each SC-based method (includ-
ing ours), we vary the value of λ and present the best results
for fair comparisons. We also consider the performance of
kNN, since it is a training-free classifier utilizing data local-
ity, and can be considered as a baseline approach. We set k
= 3 for kNN because we observe that the average number of
non-zero coefficients over four SC-based methods is 3.

From Figure 2, we see that our LGSR and locality con-
strained SC achieved comparable performances, and both out-
performed other SC or kNN based approaches. Such im-
provements become more significant in lower dimensional
spaces. From our experiments, we observed that the LGSR
required a larger λ2 in penalizing the data locality regulariza-
tion, when a lower (dominant) dimensional space is consid-
ered. For example, we have λ1 = 0.1 and λ2 = 0.5 for our
LGSR in the case using 10-dimensional Eigenface features.
This implies that the data locality is better preserved in lower
dimensional space, and a better recognition performance will
be achieved if a stronger constraint on data locality is imposed
(rather than the group sparsity one).

In addition to Eigenface, we also perform Fisherface to
extract the image features and repeat the above experiments

http://www.cs.ubc.ca/~murphyk/Software


Table 2. Comparisons of recognition performance on Ex-
tended Yale B. NT indicates the number of training images.
NT 8 16 32
kNN (k=3) 76.70 ± 1.14 86.99 ± 1.36 93.29 ± 0.42
SRC [4] 84.38 ± 1.21 92.95 ± 0.42 97.83 ± 0.14
SC+GL [5] 84.39 ± 1.21 92.95 ± 0.42 97.83 ± 0.17
SC+LLC [10] 84.74 ± 1.24 93.17 ± 0.19 97.89 ± 0.13
Ours 85.17 ± 1.15 93.54 ± 0.40 98.14 ± 0.21

(we use all 39 eigenspaces for Fisherface). Table 1 shows
the recognition accuracy of the methods considered. Com-
pared to the results using Eigenfaces with dimension 40, kNN
has a remarked improvement from 89.2% to 93.2%. The is
because the within-class variation is suppressed using Fish-
erface, while the separation of projected data from different
classes is improved. This also explains why the SC with
the group Lasso constraint performed better than the standard
SRC using Fisherface, but not in the case of Eigenface.

4.2. Extended Yale B Database

The cropped Extended Yale [14] consists of 2414 frontal im-
ages of 38 subjects, each image has up to 64 illumination vari-
ations. We extract Fisherfaces as the features, and consider
different number of training images (NT ) per class for evalu-
ation. Once the training images are extracted, the remaining
will be test images. We perform three random trials, and the
recognition performances are shown in Table 2.

From Table 2, we see that our LGSR consistently outper-
forms other SC-based methods. Figure 3a shows an example
query image which was correctly recognized by our LGSR
but not by others, and Figure 3b shows the training images
selected by different methods. The values below each image
in Figure 3b are the associated weights. From the first three
rows in Figure 3b, we see that the query image was recon-
structed by different sets of training images, but those with
the largest weights were not from the correct class to be rec-
ognized. In the third row of Figure 3b, large coefficients were
assigned to images with smaller distances to the test image
due to noise (i.e. those with similar illumination variations).
In the last row of Figure 3b, our method identified two groups
of training data for LGSR representation. The training im-
ages in the correct group were assigned larger weights, and
thus the query input was able to be successfully recognized.

5. CONCLUSION

A locality and group sensitive sparse representation (LGSR)
was presented for robust face recognition. Our LGSR bal-
ances data group sparsity and locality, and produces an im-
proved image representation for classification by solving a
unified optimization problem. Comparing to prior sparse cod-
ing based approaches, our LGSR is robust to lighting, pose,

Fig. 3. (a) An input test image. (b) Selected training images
with non-zero weights (the numbers below each image) using
SC, SC+group Lasso, SC+locality, and our method. Images
bounded by green rectangles are the correct class, and the red
rectangle ones are faces from other identities.

facial details, etc. variations in face recognition, and achieved
very promising recognition results.
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